
Team 23

1


Abstract—This report describes the world of smart home

appliances and our solution to reducing their apparent
complexity: Smart Hub. Smart Hub is a low-cost, high-
functionality alternative to pre-existing devices that integrate
technology around a home. From radio frequency communication
to infrared, Smart Hub is capable of syncing with multiple home
appliances such as air conditioners, window shades and smart
outlets. A Raspberry Pi 2 is what gives it its processing power,
while Atmel ATtiny85 microcontrollers control the peripheral
devices. This report also discusses the project’s progress thus far
and what needs to be accomplished to reach project completion.

I. INTRODUCTION
he past decade has seen a drastic rise in home appliance
complexity. While this is widely an effort to integrate
smart technology in our everyday lives, one cannot deny

that there is a learning curve that must be overcome in order to
utilize say, a modern day central air system or a smart
television. Arguments can be made in favor of this complexity
by saying that consumers who are not the most well-versed
with technology are now compelled to change that and learn
more about the technology that serves them well. Steve
Cousins, a manager at the Palo Alto Research Center (PARC)
makes a similar point:

“People are getting more proficient [with technology]
because they have to, not because they want to” [1].

However, the above statement also proves that there is some
reluctance when it comes to people welcoming technology into
their homes. Most modern smart devices that serve nontrivial
purposes—such as home heating, refrigeration, etc.—involve
a setup process that is the biggest factor to turn people away
from the investment. The Nest thermostat for example, is a
slick and efficient device to suit one’s heating or cooling
needs. It comes with a setup process that aims to be simple but
might discourage many customers who are not technologically
literate or prefer not to be so involved with their technology
[2]. There are many electronic products on the market that are
remarkably easy to setup and use within a unique ecosystem.
However, it is very complicated and often impossible for these
devices to communicate with each other without having to use
multiple, incompatible applications and hardware
configurations.

People with physical disabilities are not accounted for
either. While there are accessibility options on all modern day
computing devices, home appliances are left out with no ‘ease
of access’ solutions other than perhaps a bulky, often
complicated remote controller.

The inspiration for Smart Hub arose from these very issues.
We want to create a device that not only makes home
appliances smarter, but also makes them simpler and more
intuitive to use. Speech is one of the most instinctive human
attributes and so we decided to incorporate voice control to
send commands to various home appliances. We believe that
this could have significant societal impact in terms of
accessibility.

We also want a low-cost product to compete with the more
expensive alternatives that are on the market. We primarily
made comparisons with Amazon’s Echo and found that Smart
Hub can deliver similar functionality for cheaper. An in-depth
comparison between Smart Hub and its competitors can be
seen in Fig.8 in the Appendix. Additionally, we want to make
Smart Hub compatible with pre-existing smart peripherals
(Belkin WeMo, Philips Hue) to better utilize current retail
devices.

In essence, we want this to be a customer’s product; one that
is cost effective and user friendly. This entails developing a
lightweight device with a minimal setup time and an intuitive
interface.

II. DESIGN
A. Overview
The Smart Hub ecosystem can be seen in Fig. 1 on the

following page. At the core of the system will be the Smart
Hub itself, powered by a Raspberry Pi 2 [3]. It will be used as
a base station to control all of the peripherals around the home.
Among these will be a window air conditioning unit (IR), a
temperature probe (RF), an automatic window shade (RF), and
a Belkin WeMo wireless switch (Wi-Fi). The Smart Hub will
broadcast and receive RF signals to most of the peripherals
using an RF transmitter and receiver. It will control Wi-Fi
connected smart devices through the built-in wireless router.
Lastly, it will be able to control any IR device by recording
and sending IR its commands. A summary of system
specifications is shown in Table I.

In order to make the Hub simple to use, we will incorporate
an open source voice recognition system called Jasper. Jasper
will be capable of recognizing certain spoken voice commands

Smart Hub MDR Report
Patrick Lowry, EE, Aman Sardana, EE, Sidney Saycocie, EE, and Chris Mitchell, EE

T

TABLE I
SMART HUB SYSTEM SPECIFICATIONS

Specification Value
RF Control 2 Tx/Rx channels

(315 and 433 MHz)
Speakers 2.0
Operating Voltage 12 V
Operating Amperage 6 A (max)
RF Range
Total Cost

> 20m
<$150

Team 23

2

and communicating with the user’s home appliances
accordingly. A USB microphone will be used to collect voice
input for this purpose.

There will also be a web companion to the hub, through the
means of a web server installed on the Raspberry Pi 2. This
web server will serve up a website containing a GUI through
which the user can control all of their appliances from a
computer (in home or remotely). For security, every Smart
Hub will have unique login details (a username and password)
when connecting via the website to prevent unauthorized
control of devices.

B. Smart Hub
At the center of the whole system is the Hub itself. The Hub

acts as the brain and central nervous system of the user’s
network of smart devices. It will be an easy way for the user to
interact with and control the connected devices throughout
their home. The Smart Hub connects to the user’s home
network using a built-in N150 wireless router [5], which will
connect directly to a cable modem or fiber-optic equivalent

(Fig. 2). All that’s left is for the user to plug the Hub into a
power outlet and it’s ready to use (Fig. 2).

The Hub uses the Pi to run the extensive code and
communicate with the user’s smart peripherals. On the Pi will
be a host of software including a web server and voice
recognition API. The web server will allow the user to
conveniently control their devices from anywhere, on any
internet connected device, using their unique login credentials.
While they’re home, the user can control their devices by
talking to Jasper, an open source voice recognition API. The
Pi will output Jasper’s responses to the system’s speakers and
it will take input from a USB connected microphone.
 The Raspberry Pi 2 is an extremely versatile tool in an
inexpensive package. However, due to the low price, the audio
quality is subpar. Because the audio quality is of the utmost
importance for providing a rich user experience with Jasper,
the Hub includes a built-in 2.0 speaker system with a stereo
audio amplifier and volume control.
 This block, shown in Fig. 3 on the next page, relies heavily
on Circuits I and II as well as Electronics I and II. With three
vital devices packed into one compact case, it’s important to
be able to supply the correct voltages and currents while
maintaining circuit isolation to prevent shorts and
electromagnetic interference. The Hub is fed 12V at a
maximum of 6A from an AC/DC adapter with a barrel plug
connection. From there, the voltage is stepped down using DC-
to-DC buck converters with a maximum rating of 3A each.
The first converter is set to 5V, which is used to power the
wireless router and the Raspberry Pi 2 (as well as smaller, less
power hungry circuitry). The other converter is set to 8.7V in
order to power the audio amplifier.

 Fig. 1. Smart Hub system block diagram illustrating the Smart Hub and its wireless device ecosystem. The Smart Hub is at
the center with an AC unit to the right, a window shade controller to the upper right, a temperature probe directly above,
and a Belkin WeMo switch to the top left.

 Fig. 2. Simple diagram of Smart Hub setup. The smart hub only
needs a power source and an internet source.

Team 23

3

 The Smart Hub will connect to wireless devices using three
separate methods. The first is over the Wi-Fi connection
provided by the built-in wireless router. This will be used to
connect with and control retail devices such as those from the

Belkin WeMo and Philips Hue product lines (we will be using
a Belkin WeMo switch). The Hub will also be able to control
non-Wi-Fi connected devices that can be controlled with IR.
Using IR LED’s and an IR receiver, the Hub will be able to
record IR commands from a device’s included IR remote (we
will be using a windowed air conditioner) and then transmit
them. For the third method we will use RF transmitters and
receivers to create and control our own wireless peripherals.
The Hub itself will house a 315 MHz transmitter and a 433
MHz receiver in order to reduce congestion on the bands. The
transmitter and receiver will be connected to the GPIO
(general purpose input output) pins on the Pi 2 and will
transmit commands or receive the current states of the devices.
Using Manchester encoding, the transmitters will be able to
send binary codes over RF to relay information and
commands.
 The two important topics for the Hub that will need to be
studied and learned are RF communication and audio noise
filtering. The RF will likely be the most complicated portion of
the Smart Hub base station. This is largely due to the
complexity of writing, filtering, and communicating with the
Manchester code. The audio circuit is currently very
susceptible to noise interference from the rest of the circuitry.
It will be important to magnetically shield the speakers to
reduce electromagnetic interference with the other components
(especially the RF devices).
 Because there are so many different devices with different
power requirements in the enclosure, it was very important to
find an AC/DC adapter that could supply enough current with

little to no extra noise. The initial adapter chosen was rated for
5A, however it wasn’t able to power the wireless router on its
own (0.7A demand). Using 9, 1W 200Ω resistors in parallel, I
was able to ensure that the issue was with the adapter and not
the router. With these results it was determined that a higher
quality adapter would need to be used. The adapter has since
been changed to a 12V 6A supply that can fully power all of
the internal devices of the Hub with 2-3A to spare (for higher
current due to increased demand from the router and Pi 2).

C. Window Shade Controller
The window shade controller is made up of a stepper motor,

a stepper motor driver, an ATtiny85 microcontroller [6], a
433MHz RF transmitter [7], and a 315MHz RF receiver [8].
The stepper motor is a RioRand motor that has 125oz.in of
torque and 200steps/revolution [9]. This motor will be
connected to the shade by a gear on the motor and one
attached to the shade spindle. The motor will be driven by a
basic stepper motor driver that will be supplied with between
15-20V and 2-3A. The driver is rated for 6-30V but anything
above 22-25V range has a chance to cause a short in the board
that could damage its main IC. The driver will be controlled
by the ATtiny85 running Arduino IDE. It will receive
commands from the Hub through a 315MHz RF receiver
which it will then turn into signals for the driver to control the
motor in the correct direction and number of steps with a 5V
High/0V Low or 0-5V rising edge digital signal respectively.
The ATtiny85 will keep track of the position of the shade
(whether it is up or down) and will relay this to the Hub
through the 433MHz RF transmitter. The ATtiny85 as well as
the RF transmitter and receiver will all be powered with 5V
that the EasyDriver will supply. A block diagram of the system
is shown in Fig. 4

D. Temperature Probe
One of the peripheral devices we are building to interact with

the Smart Hub is a temperature probe. The purpose of this
temperature probe is to monitor indoor temperature and

Fig. 3. Block diagram of the Smart Hub. The Hub has a Raspberry
Pi 2, a wireless router, a stereo audio amplifier with speakers, and
RF communication chips all built-in.

Fig. 4. Block diagram of the window shade controller. The
controller uses an ATtiny85 to process commands from the Smart
Hub and to control a stepper motor driver powering a stepper motor.
The ATtiny85 receives commands via 315MHz RF and transmits via
433MHz.

Team 23

4

humidity. This data will be displayed on the web server or it
can be reported from the Smart Hub’s speakers by prompting
Jasper. The final version of the temperature probe will have 3
parts: a temperature/humidity sensor, a microcontroller, and an
RF transmitter. The block diagram for the probe is shown in
Fig. 5.We want a sensor that is small, cheap, and accurate. The
DHT11 temperature and humidity sensor meets these three
constraints [10]. It costs less than $2, it is accurate for
temperature readings between 0oC and 50oC, and it is accurate
for humidity readings between 20-80% [10]. It is accurate
enough for indoor readings, which is all we need because
outdoor temperature and humidity data can be obtained from
the internet by the Smart Hub. The DHT11 uses a capacitive

humidity sensor and a thermistor to measure the surrounding
air, producing a digital signal on the data pin [10]. The digital
signal will be read by a microcontroller and then it will be sent
to the Smart Hub wirelessly through an RF transmitter. The
microcontroller that we chose for the temperature probe was
Atmel’s ATtiny85. Again, we wanted a component that was
small, cheap, and simple enough to be able to read and send
data. The ATtiny85 is also less than $2, has 8KB of flash
memory, 6 general purpose input/output pins, and an 8-bit
CPU [6]. Since we are just using this microcontroller to read
and send two numerical values, there is no need for a bigger,
more complex microcontroller. The ATtiny85 runs by using
the Arduino programming language and the code is loaded
onto the ATtiny85 by using an in-system programmer (ISP).
The DHT11 sensor and ATtiny85 microcontroller were tested
to see if they worked together by using an Arduino Uno. The
Arduino was used so that we could visually see the output of
the ATtiny85 through its serial communication port. Using the
Arduino IDE’s serial monitor we were able prove that the
DHT11 and the ATtiny85 successfully work as a pair by
displaying the humidity and temperature values on the
computer screen. We are going to implement a 433MHz RF
transmitter to the probe so that we can send the temperature
and humidity values wirelessly to the 433MHz RF receiver in

the Smart Hub. The Raspberry Pi 2 in the Smart Hub will then
be able to interpret the data and upload it to the web server,
while Jasper can recite this information when prompted to.
The same can be done with outdoor temperature by using the
Raspberry Pi 2 to gather local weather information from the
internet. Using both the indoor and outdoor readings, the
Smart Hub can use this information to regulate an air
conditioning unit near the Smart Hub by using IR to send
commands.

III. PROJECT MANAGEMENT
According to our evaluators, the MDR deliverables we

initially promised—working subsystems and partial
integration—were too ambitious given the complexity of the
project. After receiving the feedback from the professors, we
therefore adjusted our MDR deliverables. The new goal for
MDR was to focus on getting each block of the block diagram
working on its own. Table II on the next page displays our
MDR deliverables. For MDR we designed and 3D-printed an
enclosure and installed major components into it, including
wireless router, Raspberry Pi 2, audio amplifier circuit and
speakers. We designed, assembled, and tested the temperature
and humidity sensor that will be placed in the user’s home, we
created a Pi-based web server along with HTML and CSS
formatted PHP web pages for the user to control future
connected devices, and we designed and tested a circuit
configuration (stepper motor and driver) for the automatic
window shade to be implemented for CDR.

There is a significant amount of work remaining before
CDR arrives, as illustrated in the Gantt chart shown in Fig. 7.
The Smart Hub must be completed, with all internal
components properly assembled and functioning. This entails
adding the RF circuitry (315MHz transmitter and 433MHz
receiver), adding a fan and controller circuit to allow the
internal devices to remain at an acceptable temperature, and
adding an (ideally) internal microphone to the case before
printing the top cover. For the window shade peripheral, the
control circuit needs to be finalized so that the shade can
temporarily be controlled by buttons or a timer, the frame
needs to be made to hold the shade as well as the stepper
motor, and the RF transmitter and receiver need to be added so
that it can interact with the Hub. For the temperature probe,
the RF transmitter needs to be added to the circuit (and the
code modified for transmission), and the code for the Pi to
control the air conditioner unit based on the indoor
temperature needs to be written and tested. For the web server,
the functionality needs to be improved and other functions
need to be added so that the site is ready when the peripherals
are completed, and the design needs to be improved with
content that explains the project and gives info about each
team member. The control code for the Pi needs to be written
and added: this includes Jasper and the software to control the
WeMo switch. Finally, all of these subsystems need to be
integrated sufficiently by CDR so that the remainder of time
before FDR can be spent troubleshooting and fine-tuning.

 Fig. 5. Block diagram of temperature probe. The probe is
controlled by an ATtiny85, which processes temperature and
humidity values from the DHT11 sensor and transmits it to the
Smart Hub via a 433MHz transmitter.

Team 23

5

The first stage of the project largely required
compartmentalizing responsibilities and working individually
on the various components in preparation for full system
integration. The team manager arranged weekly meetings with
our advisor to review our progress and plan further
development of each subsystem. We also met periodically to
improve our designs, solve issues with the in-progress designs,
or discuss how the peripherals will interact once finished. The
team manager included all team members in email
correspondence with our advisor and evaluators to ensure that
each team member was informed of any project developments,
part orders, or other updates.

Because we are all Electrical Engineering students, the
heavy amounts of code will be challenging. However, our
collective programming experience from various courses,
including Computer Systems and Data Structures, will be
particularly useful. We have experience with Java, C, Python,
JavaScript, and PHP. More importantly, we have experience
integrating hardware with computer languages. This skill will
be vital for integrating the subsystems into the larger system.

In addition to our team meetings and the heretofore
mentioned email correspondence, our team typically
communicates either before or after a shared class or over the
internet using a shared drive and instant messaging services.
The Gantt chart for the tasks leading up to MDR are shown in
Fig. 6 below; tasks leading up to CDR are shown in Fig. 7.

 Fig. 6. Gantt chart showing responsibilities up until MDR with start and end dates denoted by sequences of green “n” blocks.

TABLE II
MDR DELIVERABLES

Deliverable Completed
Smart Hub Enclosure 95%

Smart Hub Internal Assembly 85%

Apache Web Server on RPi2 100%

Smart Hub Website

Temperature Probe (w/o RF)

Window Shade Controller
(w/o RF)

Window Shade Mount

30%

100%

20%

0%

Team 23

6

IV. CONCLUSION

The Smart Hub project is progressing steadily with the Hub
being mostly assembled and two of the peripherals being
completed, with the exception of the RF components. These
peripherals are the window shade controller and the
temperature and humidity sensor. The web server is running on
the Raspberry Pi 2, which is installed in the Smart Hub
enclosure. In the coming months, the RF will be incorporated
into the two peripherals as well as the Hub. The Hub itself will
also be able to receive and send IR commands. Code will also
be written to allow the Hub to control the shade, an AC unit,
and the WeMo plug. The web server will receive a lot of work
allowing it to control the Hub and the peripherals. Jasper will
be integrated into the system as well and will be given the
same access. The hardest part of this process will be ensuring
that all of the different parts have uninterrupted and clean
communication whether via RF, Wi-Fi, or IR.

 Fig. 7. Proposed Gantt chart showing responsibilities up until CDR in early March with start and end dates denoted by sequences of green “n” blocks.

Team 23

7

APPENDIX

REFERENCES
[1] K. Hafner, "Techies by Necessity, Not by Choice," The New York

Times, July, 2003. Available:
http://www.nytimes.com/2003/07/24/technology/circuits/24boot.html?p
agewanted=all

[2] Nest Labs, "Installing the Nest Learning Thermostat," Web, Sep., 2015.
Available: https://www.youtube.com/watch?v=dHKD-9uI24I

[3] Raspberry Pi Foundation (2016). Raspberry Pi 2 Model B. Available:
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/

[4] Jasper Project (2016). Control Anything with Your Voice. Available:
https://jasperproject.github.io/

[5] Netgear (2016). G54/N150 Wireless Router. Available:
http://www.netgear.com/home/products/networking/wifi-
routers/WNR1000.aspx#tab-techspecs

[6] Atmel 8-bit AVR Microcontroller with 2/4/8K Bytes In-System
Programmable Flash, 1st ed. San Jose: Atmel, 2015, pp. 2-5.

[7] Amazon.com (2016). SMAKN 433Mhz Rf Transmitter and Receiver
Link Kit for Arduino/Arm/McU. Available:
http://www.amazon.com/SMAKN%C2%AE-433Mhz-Transmitter-
Receiver-
Arduino/dp/B00M2CUALS/ref=sr_1_1?ie=UTF8&qid=1453753998&s
r=8-1&keywords=433+mhz+transmitter

[8] Amazon.com (2016). SMAKN 315Mhz Rf Transmitter and Receiver

Link Kit for Arduino/Arm/McU. Available:
http://www.amazon.com/SMAKN%C2%AE-315Mhz-Transmitter-
Receiver-
Arduino/dp/B00UWBJ7GK/ref=sr_1_1?ie=UTF8&qid=1453754132&s
r=8-1&keywords=315+mhz+transmitter

[9] Amazon.com (2016). RioRand Stepper Motor – 125 oz.in (200
steps/rev)-JK57HS51-2804. Availabe:
http://www.amazon.com/RioRand-Stepper-4-Phase-5-Wire-
ULN2003/dp/B00JHS2AH2/ref=sr_1_1?ie=UTF8&qid=1453754226&s
r=8-1&keywords=riorand+stepper+motor

[10] DHT11 Humidity & Temperature Sensor, 1st ed. London: D-Robotics,
2015, pp. 2-3.

Fig. 8. In-Depth Smart Hub competition comparison.

